aurel.solutions
Here are a couple solutions to Einstein’s field equations.
Functions in these modules generate numerical data based on
analytical expressions.
solutions.Collins_Stewart
This is a Collins and Stewart 1971 solution that describes
a Bianchi II γ-law perfect fluid homogeneous solution.
See section 3.3 of 2211.08133
-
aurel.solutions.Collins_Stewart.Kdown3(t, x, y, z)[source]
Extrinsic curvature
-
aurel.solutions.Collins_Stewart.data(t, x, y, z)[source]
Returns dictionary of Collins Stewart data
-
aurel.solutions.Collins_Stewart.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric
-
aurel.solutions.Collins_Stewart.gdown4(t, x, y, z, analytical=False)[source]
Spacetime metric
-
aurel.solutions.Collins_Stewart.press(t, x, y, z)[source]
Pressure
-
aurel.solutions.Collins_Stewart.rho(t, x, y, z)[source]
Energy density
solutions.EdS
FLRW spacetime with an Einstein-de Sitter model
-
aurel.solutions.EdS.Hconf(t)[source]
Conformal Hubble function
-
aurel.solutions.EdS.Hprop(t)[source]
Proper Hubble function
-
aurel.solutions.EdS.Kdown3(t, x, y, z)[source]
Extrinsic curvature
-
aurel.solutions.EdS.Omega_m(t)[source]
Matter density parameter
-
aurel.solutions.EdS.a(t)[source]
Scale factor
-
aurel.solutions.EdS.a_func_z(z)[source]
Scale factor from redshift
-
aurel.solutions.EdS.alpha(t, x, y, z)[source]
Lapse
-
aurel.solutions.EdS.an_today(t)[source]
Scale factor normalised by a(z=0)
-
aurel.solutions.EdS.betaup3(t, x, y, z)[source]
Shift
-
aurel.solutions.EdS.fL(t)[source]
Growth index = d ln (delta) / d ln (a)
-
aurel.solutions.EdS.gammadown3(t, x, y, z)[source]
Spatial metric
-
aurel.solutions.EdS.press(t)[source]
Pressure
-
aurel.solutions.EdS.redshift(t)[source]
Redshift
-
aurel.solutions.EdS.rho(t)[source]
Energy density
-
aurel.solutions.EdS.t_func_Hprop(Hprop)[source]
Proper time from Hubble
-
aurel.solutions.EdS.t_func_a(a)[source]
Proper time from scale factor
-
aurel.solutions.EdS.t_func_z(z)[source]
Proper time from redshift
solutions.Harvey_Tsoubelis
This is a A.Harvey and T.Tsoubelis solution that describes
a vacuum Bianchi IV plane wave homogeneous spacetime
page 191 of ‘Dynamical Systems in Cosmology’ by J.Wainwright and G.F.R.Ellis
See section 3.5 of 2211.08133
-
aurel.solutions.Harvey_Tsoubelis.Kdown3(t, x, y, z)[source]
Returns the extrinsic curvature
-
aurel.solutions.Harvey_Tsoubelis.Tdown4(t, x, y, z)[source]
Energy stress tensor
-
aurel.solutions.Harvey_Tsoubelis.alpha(t, x, y, z)[source]
Returns the lapse function
-
aurel.solutions.Harvey_Tsoubelis.betaup3(t, x, y, z)[source]
Returns the shift vector
-
aurel.solutions.Harvey_Tsoubelis.data(t, x, y, z)[source]
Returns dictionary of Harvey Tsoubelis data
-
aurel.solutions.Harvey_Tsoubelis.gammadown3(t, x, y, z, analytical=False)[source]
Returns the spatial metric
-
aurel.solutions.Harvey_Tsoubelis.gdown4(t, x, y, z, analytical=False)[source]
Returns the spacetime metric
-
aurel.solutions.Harvey_Tsoubelis.press(t, x, y, z)[source]
Returns the pressure
-
aurel.solutions.Harvey_Tsoubelis.rho(t, x, y, z)[source]
Returns the energy density
-
aurel.solutions.Harvey_Tsoubelis.uup4(t, x, y, z)[source]
Fluid 4 velocity
solutions.ICPertFLRW
See: https://arxiv.org/pdf/2302.09033
and: https://arxiv.org/pdf/1307.1478
-
aurel.solutions.ICPertFLRW.Kdown3(sol, fd, t, Rc)[source]
Extrinsic curvature, nonlinear from gammmadown3
-
aurel.solutions.ICPertFLRW.Rc_func(x, y, z, amp, lamb)[source]
Comoving curvature perturbation
-
aurel.solutions.ICPertFLRW.delta1(sol, fd, t, Rc)[source]
Linear density contrast
-
aurel.solutions.ICPertFLRW.gammadown3(sol, fd, t, Rc)[source]
Spatial metric with 1st order perturbations
solutions.LCDM
FLRW spacetime with a \(\Lambda\)CDM model
-
aurel.solutions.LCDM.Hconf(t)[source]
Conformal Hubble function
-
aurel.solutions.LCDM.Hprop(t)[source]
Proper Hubble function
-
aurel.solutions.LCDM.Kdown3(t, x, y, z)[source]
Extrinsic curvature
-
aurel.solutions.LCDM.Omega_m(t)[source]
Matter density parameter
-
aurel.solutions.LCDM.a(t, analytical=False)[source]
Scale factor
-
aurel.solutions.LCDM.alpha(t, x, y, z)[source]
Lapse
-
aurel.solutions.LCDM.an_today(t)[source]
Scale factor normalised by a(z=0)
-
aurel.solutions.LCDM.betaup3(t, x, y, z)[source]
Shift
-
aurel.solutions.LCDM.fL(t)[source]
Growth index = d ln (delta) / d ln (a)
-
aurel.solutions.LCDM.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric
-
aurel.solutions.LCDM.redshift(t)[source]
Redshift
-
aurel.solutions.LCDM.rho(t)[source]
Energy density
solutions.Non_diagonal
See section 3.2 of 2211.08133
-
aurel.solutions.Non_diagonal.A(z, analytical=False)[source]
Conformal factor
-
aurel.solutions.Non_diagonal.Kdown3(t, x, y, z)[source]
Extrinsic curvature
-
aurel.solutions.Non_diagonal.Tdown4(t, x, y, z)[source]
Stress-energy tensor, from Einstein’s field equations
-
aurel.solutions.Non_diagonal.data(t, x, y, z)[source]
Returns dictionary of Non-diagonal data
-
aurel.solutions.Non_diagonal.dzA(z)[source]
Conformal factor 1st derivative
-
aurel.solutions.Non_diagonal.dzdzA(z)[source]
Conformal factor 2nd derivative
-
aurel.solutions.Non_diagonal.gammadown3(t, x, y, z, analytical=False)[source]
Spatial metric
-
aurel.solutions.Non_diagonal.gdown4(t, x, y, z, analytical=False)[source]
Spacetime metric
solutions.Rosquist
This is a Rosquist and Jantzen solution that describes
a Bianchi VI tilted γ ̃-law perfect fluid homogeneous solution with vorticity
See section 3.4 of 2211.08133
-
aurel.solutions.Rosquist_Jantzen.Kdown3(t, x, y, z)[source]
Returns the extrinsic curvature
-
aurel.solutions.Rosquist_Jantzen.Tdown4(t, x, y, z)[source]
Returns the energy-stress tensor
-
aurel.solutions.Rosquist_Jantzen.data(t, x, y, z)[source]
Returns dictionary of Roquist Jantzen data
-
aurel.solutions.Rosquist_Jantzen.gammadown3(t, x, y, z, analytical=False)[source]
Returns the spatial metric
-
aurel.solutions.Rosquist_Jantzen.gdown4(t, x, y, z, analytical=False)[source]
Returns the spacetime metric
solutions.Schwarzschild_isotropic
This is the Schwarzschild solution in in isotropic coordinates
with maximal slicing.
See https://arxiv.org/pdf/0904.4184
-
aurel.solutions.Schwarzschild_isotropic.Kdown3(t, x, y, z)[source]
Returns the extrinsic curvature
-
aurel.solutions.Schwarzschild_isotropic.Kretschmann(t, x, y, z)[source]
Kretschmann scalar
-
aurel.solutions.Schwarzschild_isotropic.Tdown4(t, x, y, z)[source]
Returns the energy-stress tensor
-
aurel.solutions.Schwarzschild_isotropic.alpha(t, x, y, z, analytical=False)[source]
Returns the lapse function
-
aurel.solutions.Schwarzschild_isotropic.betaup3(t, x, y, z)[source]
Returns the shift vector
-
aurel.solutions.Schwarzschild_isotropic.data(t, x, y, z)[source]
Returns dictionary of Schwarzschild data
-
aurel.solutions.Schwarzschild_isotropic.gammadown3(t, x, y, z, analytical=False)[source]
Returns the spatial metric
-
aurel.solutions.Schwarzschild_isotropic.gdown4(t, x, y, z, analytical=False)[source]
Returns the spacetime metric
-
aurel.solutions.Schwarzschild_isotropic.null_ray_exp_out(t, x, y, z)[source]
Outward null ray expansion
solutions.Szekeres
This is a \(\Lambda\) - Szekeres solution
which is perturbed solution of the flat dust FLRW + LCDM spacetime.
See section 3.1 of 2211.08133
-
aurel.solutions.Szekeres.Kdown3(t, x, y, z)[source]
Returns the extrinsic curvature
-
aurel.solutions.Szekeres.Z_terms(t, x, y, z, analytical=False)[source]
Returns F, Z, dtZ functions
-
aurel.solutions.Szekeres.alpha(t, x, y, z)[source]
Returns the lapse function
-
aurel.solutions.Szekeres.betaup3(t, x, y, z)[source]
Returns the shift vector
-
aurel.solutions.Szekeres.data(t, x, y, z)[source]
Returns dictionary of Szekeres data
-
aurel.solutions.Szekeres.gammadown3(t, x, y, z, analytical=False)[source]
Returns the spatial metric
-
aurel.solutions.Szekeres.gdown4(t, x, y, z, analytical=False)[source]
Returns the spacetime metric
-
aurel.solutions.Szekeres.press(t, x, y, z)[source]
Returns the pressure
-
aurel.solutions.Szekeres.rho(t, x, y, z)[source]
Returns the energy density